Lithospheric-scale Three-dimensional Modelling

(Application to the EARS and Plateau)

Girma Woldetinsae (Geological Survey of Ethiopia)

- H.-J. Götze
- · R. Hackney
- S. Schmidt

(Institut für Geowissenschaften Christian Albrechts Universität zu Kiel, Germany)

Aims

- Homogenise existing gravity surveys;
- Compile constraining data and information;
- Investigate isostasy and isostatic state;
- Investigate the effect of dynamic topography;
- Carry out 3-D density modelling;
- Study the rigidity of the lithosphere.

Regional setting

Contents

Topography, tectonics, geology

- Database
- Methodology
- Isostasy
- Examples from the 3D modelling
- Key results of the 3D modelling
- Summary

Topography and tectonic setting

data source: GTOPO30, Smith and Sandwell (1997)

Gravity database

Bouguer anomaly map

Positive Bouguer anomalies:

along fracture systems of Gulf of Aden, Indian Ocean and Red Sea axial zone.

Relative positive anomalies:

Afar, Anza cross rift, Eastern Sudan.

Negative anomalies

MER, KR, Western Rift, Plateaus of Ethiopia, Kenya and Saudi Arabia.

Seismic experiments

Berckhemer et al. 1970 (Ethiopia) and KRISP in Kenya EAGLE (2001-2004)

3-D modelling area

Geometry and density information

- Topography and geography
- Geology, tectonics
- Crustal densities

Density measurements in Ethiopia (~ 800) Density information from eastern Sudan Density from chemical composition data

Constraints from seismic
 Afar experiment (1970); KRISP (1990) & EAGLE (2001-2004)

Axial thinning: Turkana (KRISP, 1900); NMER (Keller et al. 2004 and EAGLE).
Low velocity: (7.4-7.8 km/s) in Afar (Berckhemer, 1975).
Velocity-density conversions: Sobolev & Babeyko (1994)

Methodology

3-D density modelling: process

Isostasy

Why is it necessary to investigate isostasy?

For more constraints (e.g. isostatic Moho) For geological correlation

- Isostatic models
- Interpretation
- Study the effect of dynamic topography

Isostatic models

Vening-Meinesz (VM) modelled Moho

Isostatic regional gravity

(D= 10²² Nm, Te= 10 km),

Isostatic residual field

Dynamic topography

Dynamic topography & isostatic residual field

Modelling

IGMAS features

- Geometry input
- Automatically triangulated geometry
- Graphical integration of constraining data
- Interactive modification
- ASCII output, postscript

Calculation of:

 Gravity, gravity gradients, potential, geoid undulation, remanent & induced magnetic field.

General structure of the model

Modelling results and interpretation

Measured gravity

Modelled gravity

Crustal models

(A**)**

Crustal models

Crustal models

Rift axial

Rift perpendicular

Wide to narrow rift

Wide to narrow rift

Horizontal cross-sections

Moho and basement

Moho from 3D model

Shallowest Moho in Afar: ~16 km.

Deepest Moho in WEP: 48km.

Mean Moho: ~30km.

The maximum load in WEP: ~8x10¹⁸kg/m² and induces a downward flexure of the Moho from average 35km to about 45km.

Basement topography

 Basement topography varies from few 100 m to 7 km.

 Deep basement exists in the rift, south west Ethiopia, Afar, Turkana and Eastern Sudan related to sedimentary structures.

 Shallow basement corresponds to the Precambrian structures.

Rigidity

Effective elastic thickness/rigidity

Coherence/admittance

- Require large areas
- Difficult to include internal loads
- Methods and results are in many cases controversial

(Convolution method, e.g. Braitenberg et al. 2002)

- Possible to include both external and internal loads
- No need to calculate admittance
- Higher resolution is possible
- Input: Moho geometry and total load from a 3D model

Rigidity

Summary results

- Rigidity estimates from this work and previous work are different in MER.
- All the models show low rigidity in highly tectonized zones of Afar and Turkana.
- Precambrian areas have medium to high rigidity.
- In Afar, the TGD is marked by change of lithospheric strength in all models.

- A new consistent regional gravity database;
- Bouguer gravity and isostatic residual maps;
- Isostatic models;
- A new regional 3-D density model using old and recent constraints;
- Moho and basement topography maps constrained where possible;

- The 3D model offers quantitative estimates of sedimentary thicknesses;
- The controls on rift architecture are: sediment loading, asthenospheric upwelling (40 km depth and 300 km wide) and lower-crustal modifications;
- Elastic thickness estimates:

Te Afar and Turkana: 5-20 km; Te Plateau (WEP, EEP), MER: 40-60 km; Te Western rift, eastern Sudan basin: 20-30 km; Te Sudan craton: 50-60 km.

Acknowledgement

I thank

The Geological Survey of Ethiopia (GSE) for permission to use most of the data sets and information.

The research is supported by a grant from KAAD, Germany.

All members at the Institute of Geosciences of CAU and FU Berlin for useful discussions and friendship.

Rigidity

Without dynamic topography

...Without internal load

...With internal load

TGD= Tendaho-Goba'ad discontinuity

Slab dynamic topography

Fault systems

Isostasy

Rigidity

Rigidity estimation

Elastic thickness estimation using Braitenberg et al. 2002 modified from (Ebbing, 2002) with the addition of dynamic topographic correction.

Pseudo topography (PpT)

$$\begin{split} \mathbf{L} = \mathbf{h}_{\mathrm{T}} \mathbf{\rho}_{\mathrm{T}} + \sum_{i=1}^{\mathrm{N}} \mathbf{h}_{i} (\mathbf{\rho}_{i} - \mathbf{\rho}_{c}) \\ \mathbf{h}_{\mathrm{PT}} = \mathbf{L} / \mathbf{\rho}_{\mathrm{PT}} \end{split}$$

Source: http://userpage.fu-berlin.de/~hajo/Bratislava/Files/Isostat/Isostat.html